Complexity and capacity bounds for quantum channels
نویسندگان
چکیده
We generalise some well-known graph parameters to operator systems by considering their underlying quantum channels. In particular, we introduce the quantum complexity as the dimension of the smallest co-domain Hilbert space a quantum channel requires to realise a given operator system as its non-commutative confusability graph. We describe quantum complexity as a generalised minimum semidefinite rank and, in the case of a graph operator system, as a quantum intersection number. The quantum complexity and a closely related quantum version of orthogonal rank turn out to be upper bounds for the Shannon zero-error capacity of a quantum channel, and we construct examples for which these bounds beat the best previously known general upper bound for the capacity of quantum channels, given by the quantum Lovász theta number.
منابع مشابه
Polarization of Multi-Relay Channels: A Suitable Method for DF and CF Relaying with Orthogonal Receiver
Polar codes, that have been recently introduced by Arikan, are one of the first codes that achieved the capacity for vast numerous channels and they also have low complexity in symmetric memoryless channels. Polar codes are constructed based on a phenomenon called channel polarization. This paper discusses relay channel polarization in order to achieve the capacity and show that if inputs of tw...
متن کاملGaussian Z Channel with Intersymbol Interference
In this paper, we derive a capacity inner bound for a synchronous Gaussian Z channel with intersymbol interference (ISI) under input power constraints. This is done by converting the original channel model into an n-block memoryless circular Gaussian Z channel (n-CGZC) and successively decomposing the n-block memoryless channel into a series of independent parallel channels in the frequency dom...
متن کاملOn converse bounds for classical communication over quantum channels
We explore several new converse bounds for classical communication over quantum channels in both the one-shot and asymptotic regime. First, we show that the MatthewsWehner meta-converse bound for entanglement-assisted classical communication can be achieved by activated, no-signalling assisted codes, suitably generalizing a result for classical channels. Second, we derive a new efficiently comp...
متن کاملQuantum Capacities of Channels with small Environment
We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional—including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the cha...
متن کاملEntanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices
A bipartite quantum interaction corresponds to the most general quantum interaction that can occur between two quantum systems. In this work, we determine bounds on the capacities of bipartite interactions for entanglement generation and secret key agreement. Our upper bound on the entanglement generation capacity of a bipartite quantum interaction is given by a quantity that we introduce here,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.06456 شماره
صفحات -
تاریخ انتشار 2017